If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+2y-35=0
a = 5; b = 2; c = -35;
Δ = b2-4ac
Δ = 22-4·5·(-35)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8\sqrt{11}}{2*5}=\frac{-2-8\sqrt{11}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8\sqrt{11}}{2*5}=\frac{-2+8\sqrt{11}}{10} $
| 6b+4=2b | | 10-2(m+5)=2m | | 1/3x+19=27 | | 30+d=41 | | 103x+2=8 | | 5(2n+3)=8(4n+4)+1 | | 12(x+3)=24+12x-60 | | -8+9y=5y | | 9^3x=81^x+4 | | 7v+8=-10+5v | | 7.5x+1,000=2x+300 | | 273=3+6(-3+8v) | | -10+10=2-2g | | 1/3(6m-12)=m+7 | | 29m-3m=-20 | | -0.8a=8+0.2a | | -2x-2x=0 | | 5/13=t-6-14 | | m+35=17 | | -7+4u-6u=6u+5 | | 0.10x+39.99=63.99 | | 12v-8v=20 | | 0.8x-11=-0.3x+41 | | -15=4v+1+4v | | 2x+2+3x+1=3x+3 | | 7t=9t+10 | | 2(2/7y-1)=3/7y+3/14 | | 9(x-4)/3=3(x+1)/6 | | -x+18=3x-2 | | -3-7w=-4w | | 15x+5-5x=-5 | | 3y+11=69 |